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Spatial and temporal localization of light in two dimensions
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Quasiresonant scattering of light in two dimensions can be described either as a scalar or as a vectorial
electromagnetic wave. Performing a scaling analysis we observe in both cases long lived modes, yet only the
scalar case exhibits Anderson localized modes together with extremely long mode lifetimes. We show that
the localization length of these modes is influenced only by their position, and not their lifetime. Investigating the
reasons for the absence of localization, it appears that both the coupling of several polarizations and the presence
of near-field terms are able to prevent long lifetimes and Anderson localization.
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I. INTRODUCTION

Multiple scattering of waves has been the subject of
intense debates in the context of disorder-induced Anderson
localization [1]. Indeed, since the proposal to use electromag-
netic waves in random media instead of electrons in solids
exploiting the noninteracting properties of photons at low
intensities [2], many experiments and theoretical studies have
been performed. However, despite a decade-long research, the
mere existence of Anderson localization of light [3-5] and its
relation to another long predicted phenomenon, namely Dicke
super- and subradiance [6], are still not clearly understood [7].
The advent of laser-cooled atoms and their use to study both
localization and super- and subradiance motivated the develop-
ment of ab initio models of interference effects in multiple scat-
tering of light [8]. As most experiments are typically performed
in a three-dimensional (3D) setting, models have also been
focused on such 3D configurations. However, both numerical
and fundamental aspects of localization strongly depend on the
dimension of the explored system [9]. For this reason we have
focused our efforts on a two-dimensional (2D) system, where a
precise study of the eigenvalues and eigenmodes of the system
is more efficient than in 3D, because larger “volumes” can
be simulated for a given number of scatterers. One further
advantage is that the reduced dimensionality allows for a
direct comparison of eigenvalues and eigenvectors between
two regimes of scattering, one of a scalar model of light, the
other of a vectorial model of light where the wave polarization
needs to be accounted for. This comparison recently revealed
important differences observed for the eigenvalues of the
relevant effective Hamiltonians [4,5,10].

In this work we investigate resonant scattering in a two-
dimensional setup, i.e., the light scattering and propagation
are confined to two dimensions. This configuration may be
realized, e.g., with a disordered arrangement of scatterers
in microwave cavities [11], in photonic crystals [12], near
surface plasmons, or with laser-cooled atoms located in an
off-resonance optical cavity. In this geometry, the polarization
orthogonal to the plane, called s polarization, cannot couple
through the scatterers to the planar (or p) polarizations, hence
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it is described by a scalar light model. The two p polarizations
of the electromagnetic waves do couple, and this vectorial-like
scattering includes near-field terms (see scheme in Fig. 1).
Rotating the polarization of an incident wave allows us to
switch between the scalar or vectorial regime, between the
presence or the absence of polarization degrees of freedom
and near-field terms, making it an ideal tool to investigate the
role of polarization in localization and subradiance.

In Sec. II we present a detailed derivation of the linear
differential equations that rule the population evolution of
atomic transitions. The spectral properties of these equations
are investigated in Sec. III, where scalar and vector scattering
are compared via scaling analysis. Finally, we present our
conclusions in Sec. IV highlighting uncorrelation between
spatial and temporal localization of light.

II. MODEL

Two-dimensional light scattering was investigated in mi-
crowave cavities, where light with a polarization orthogonal
to the plates approximately obeys the Helmholtz 2D scalar
equation, and Anderson localization was observed [11].
Another possibility to emulate 2D light scattering is a cloud
of cold atoms with no Doppler broadening located inside
an off-resonant optical cavity made by two metallic disks
whose diameter is much larger than their mutual distance.
This system, which is closer to situations previously studied
in 3D, constitutes the toy model system we will explore in this
paper. Let us consider an homogeneous disk-shaped cloud of
N motionless atoms sitting at randomly distributed positions
r; =(x;,y;,z;) with j =1,...,N, for which nonradiative
interactions are neglected. Instead, only virtual and real
photons couple the atoms within the optical cavity (axis z)
whose resonance frequency is significantly detuned from the
atomic transition w,. The electric dipole transitions occur
between one nondegenerate ground state |g;), related to
angular momentum ¢ = 0 and a triply degenerate excited state
le’'), where m = 0, & 1 indicate the projections of the angular
momentum ¢ = 1 over the quantization axis z. We consider
2D scattering restricted to a radial direction in the (x,y) plane
with a surface density of the atomic cloud p = N/ R?, where
R is the cloud radius.
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FIG. 1. (Color online) Two-dimensional scattering scheme: The
radiation of wave number k close to the atomic transition k, =
w,/c = k, is confined in the (x,y) plane, i.e., it has wave vectors
of the form k = k(cos 6, sin#,0). Two eigenvectors are shown: a
localized s-polarized mode in the upper right part and a extended
p-polarized mode in the left part.

The interaction of the atoms with the radiation field is given
by the following Hamiltonian:
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with w, as the atomic transition frequency and 6, ; as the

atomic diagonal term, whereas & A('") = |g;){ejml| and 6;(’”) =

lejm)(g;| are the lowering and llfting atomic operators. &;S

and @y ; refer to the creation and annihilation of a photon for
mode k, with frequency wg. The coupling coefficient reads
gy =@k - dj /o /2hegV, with V as the quantization
volume and d; ,, = (g;ler;le; ) as the dipole matrix element
(with e as the electron charge). Thus, the two first terms in (1)
are the free-energy contribution and the last term corresponds
to the interaction with the vacuum modes.

We then use the commutation relations
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where the approximation in the first of these equations cor-
respond to the linear optics regime |e; ) (e | — 18;){(g;| =
—1"' (we eliminate the possibility of multiexcitation in the
system), to obtain the Heisenberg equations for the operators:
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Equations (3a) and (3b) show a correlated dynamics
between atomic levels and vacuum modes.

The radiation field plays the role of a reservoir for atoms
and is composed of an infinite number of degrees of freedom
k,s, so it is convenient to trace over these. Using the unitary
transformations 6 — ¢™ei®a! and Qs — Gxs€' ™, we
obtain the reduced equation evolution for the atomic open
system

do(m) .
=~ [ el o e
In K,s
+ gi{n*&l (n)(t ) ia)g(217r)]
x (e!RTHKT _ ¢ ¢, 4)

We can apply the rotating wave approximation and neglect the
fast oscillating terms proportional to %« Assuming that the
photon transit time inside the atomic cloud is much shorter
than the emission decay time, we can perform the Markov
approximation a(”) t—-1)~6é (”) (1) so the atomic transitions
evolves accordlng to the closed set of equations
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where the scattering kernel is defined as
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with rj; =r; —r;, and where the upper limit in the above
integral has been extrapolated to + — oo according to the
Markov approximation. The spontaneous emission processes
are naturally three dimensional and the above scattering kernel
a priori contains all light modes in 3D space, so all transitions
may be coupled. Under the assumption of an effective
two-dimensional scattering of light, we can perform in the
continuous 3D density of modes the following approximation:

1%
Z = Gy f d*k8(0 — /2), (7

k

where 6 corresponds to the azimuthal angle in spherical coor-
dinates, and V now refers to the quantization volume delimited
by the cavity. Observe we are treating the radiation field
inside a volume, however the density of modes is practically
parametrized in polar coordinates as k = k(cos ¢, sin¢ O)
The usual relation for polarization vectors ) & & & =

S — kukU (u, v the Cartesian components) here turns into

jm* Ln
g kS‘

kc & dZ

— px
= Shev ddi, + Y did 6., — kK[| (®)

W VF#Z
Therefore, the 2D condition (7) decouples the component

d;,, of the dipole matrix elements from dj ,, and djm This
phenomena is absent in 3D scattering, where all components
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of d; ,, are coupled, whereas at the other end, 1D case exhibits
all components trivially uncoupled.

J
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The single atom decay into two-dimensional vacuum modes
is given by
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where the index 2D applied on K2° means the general kernel
particularized to the two- d1mens10nal scattering. The time
integral present in Eq. (9) is solved by using the relation
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/ dte@FT = —§(k £ ky) £ i P——,
0 c W, £ wy
where P refers to the Cauchy principal value. This term gives
rise to the Lamb shift, a single atom energy shift which is
due to its interaction with the radiation field. We will here
neglect it, as it simply corresponds to a renormalization of the
energy; remark that we do not neglect the so-called collective
Lamb shift that rises from the interaction between the atoms
via virtual photons, as it is still present in the final scattering
kernel.
Using the relations

(10)

(

where the expression for d; ,, in (11b) includes choosing the
quantization axis over z, and plugging (10) into (9), we obtain
the two different decay rates:
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By looking at (10), one can see only the term k =k,
contributes. Therefore, the uncoupling of d,m from the
other components of d;, causes an anisotropy on the
spontaneous emission process, since the lifetime of transition
ejm=0 —> &; 1s twice shorter than e;,—+; — g;. These
decay rates will predict the coexistence of two scattering
subsystems with different time scales, which vector na-

|m| m ture of light will be crucial to select which subsystem is
djn=d ﬁ ﬁ*l = |mf[), (T1a)  active.
o Finally, we address the collective term by calculating the
8, — K K)) =78, , 11 integrals describing the coupling between the atoms via the
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Since the density of modes is nonzero only in the (x,y) plane,
the z component of the atoms positions does not come into
play, so in the relation

82
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where x;.‘I actually spans only (x;;,y;;). The angular integral
then reads

2w
/ e:tikx_,-[ cos ptikyj; sin¢d¢ =27 JO(krj[)a (15)
0
where J, denotes the Bessel function of the first kind and of
order 0, and rj; = /x L+ ¥ 71 1s the Euclidean distance between
each pair of atoms in the plane. Despite the integrands in (13)
diverging in the limit k — oo, the modulus of the wave vectors
k vary only slightly around k = k, (quasielastic scattering). We

(

then apply the Wigner and Weisskopf approximation which
approximates powers of k in the integral as k,. Using the
relation

/ d‘l:e‘iw“‘r / dk.]()(kl’j]) sin(kct) = 2I‘I()(kal’jl), (16)
0 0 2c

where H, is the Hankel function of the first kind and of order «,
we can calculate K22 (rj; # 0) from the action of the second
order derivative of Hy(k,r;;) with respect to xt i Practically,

we get

Kg,Do(rjl # 0) = ToHo(kar 1), (17a)
K3 L (xj # 0) = T Holkar o), (17b)
K30 o (xjr # 0) = T Hy(karj)e™¢1. (17¢)
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These coefficients allow us to obtain the following set of
equations for the atomic operators o( ):

a® 1, To —
. ~(0) 0 ~(0)
d_;‘ = —701 — 7 ;Ho(kl’jl)dl , (183.)
dst*" 1 r
i tveen i e @ED
=3 G; > Z[Hg(krj,)al
I#]j
+ e Hy(kr e ], (18b)
where tang; = (y; — y)/(x; — x;). In both Egs. (18a)

and (18b) the atoms are coupled together through the same
sublevel with a kernel term Hy(kr) that scales as a 2D
spherical wave e* //r at large distances. This 1/./r scaling
in 2D corresponds to long range coupling so we expect
global coupling (or cooperative effects) to dominate over
nearest neighbor coupling. In the vectorial case, the m = +1
sublevels are additionally coupled via a H, term which also
scales as e*"/,/r at long range. However, with respect to
global versus local interactions, Hy diverges at the origin
only as log(kr), so that the contribution of a small volume
around the particle is finite [ foro log(kr)2mrdr < oc]. Instead,
the H, term diverges at the origin as 1/r2, which means
that the interaction between the +1 sublevels is dominated
by the close neighbors or near-field terms at high densities
([ 2rdr/r? ~, —27 log(r_)].

Differently from the 3D case where scalar light is only
an approximation for dilute systems, and where all sublevels
are normally coupled, in 2D geometries scalar model holds
for high densities. Yet, controlling the polarization of the
injected light allows us to select either purely scalar or vectorial
properties which make our approach quite versatile. In the end,
two decoupled scattering subsystems appear: one involving
a single sublevel of the excited state (the scalar case), the
other one involving the remaining two sublevels (the vectorial
case). As one can note the scalar and vector kernels are not
decoupled through energy shifts like 3D work in Ref. [5], but
rather by geometrical constraints. The microwave or optical
cavity reshapes the density of electromagnetic modes into two
dimensions.

The scattered field at a point r = (x,y) is calculated by a
superposition of annihilation operators, namely

N —iwgt+ik-r
= E exli sak e K ) (19)
Kk,s

where ey = +/hwy/2€yV . With similar procedures used up to
here, using (3b), it can be shown to lead to the following
equation:
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FIG. 2. (Color online) Inverse participation ratio of the scattering
modes in the complex plane of the eigenvalues (y,,w,) for scalar light
(a) without and (c) with near-field terms, in units of I', and vectorial
light (b) without and (d) with near-field terms, in units of I';, (a) and
(d) being the physical cases. Simulations realized for a homogeneous
disk cloud of N = 5000 particles with a homogeneous p/k> =1
density.

with tang; = (y — y/)/(x — x;) and ey = (X +i§)/+/2. The
m = 0 sublevel is coupled only to light with polarization along
z, whereas the m = =£1 sublevels are coupled together through
p polarizations.

III. SPECTRAL ANALYSIS OF THE LINEAR EQUATIONS

We now turn our attention to the spectral properties of
the system. The scattering modes are the eigenmodes W
of the linear equations (18a) and (18b), where n labels
the eigenmodes. Their lifetime 1/y, and energy w, are
given by the real and imaginary part of the associated
eigenvalues, respectively. Defining 1//( ") = (U™);, the modes
can also be characterized by their inverse participation ratio
(IPR) (X, [¥{"1H)/(X; [¥{"[»)? that quantifies the (inverse)
number of atoms substantially involved in the scattering mode.
In the vectorial model we renormalize the IPR to remain 1/2
for pairs.

In the scalar case the eigenvalue distribution shown in
Fig. 2(a) exhibits strongly subradiant modes, which we define
as modes with very long lifetimes (y,, < I'y). The distribution
can be used to look for a single parameter scaling, by
computing a spectral overlap function conveniently defined
as g = (1/v,) "' /{wy — wn—1), where the modes n are ordered
by increasing energy. In line with the 3D results, we observe
a monotonic decrease of g with the system size for scalar
light [see Fig. 3(a)]. Consequently, the scaling function 8 =
dIng/dIn(kR) is clearly negative for all values of g [see
Fig. 3(b)], as expected for Anderson localization in 2D.
We note that this function g is only one among several
possibilities of defining a spectral overlap and has not been
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FIG. 3. (Color online) (a) Thouless number g as a function of the
dimensionless system size kR, for density p/k*> = 0.3 (b) scaling
function B. Longest mode lifetimes for different number of particles
(c) as a function of the optical thickness by and for all four scattering
models and (d) as a function of the dimensionless parameter N%/3/ kR
for scalar light. The circles are for scalar light, the squares for vectorial
light, the stars for scalar light with near field, and the plus for vectorial
light without near field. The black line in (c) stands for the ~1/b3
curve of the radiation trapping lifetime. In (c) and (d) blue, brown,
and magenta curves correspond, respectively, to simulations with
N = 1000, 2000, and 4000 particles. The inset in (d) shows I"p, as
a function of atomic density, indicating that density is not the best
scaling function for I'y,, even in the high density limit.

shown to be unequivocally related to transport properties of
electromagnetic radiation.

The dimensionless scaling parameter g is defined in the
scaling theory [13] as the ratio between the Heisenberg time
and the Thouless time. The former corresponds to the time
associated with the mean spacing between the energy levels,
ie., h/{E, — E,_1), which in our case reads 1/{w, — w,_1).
The latter corresponds to the time necessary for a photon
to escape from the sample, and in our open system with
eigenmodes of lifetime 1/y,,, we define it as (1/y,). Following
this interpretation, the localization regime is characterized
by a Thouless (diffusion) time that becomes larger than the
Heisenberg one.

In the vectorial case exhibited in Fig. 2(d) we observe a
dramatically different eigenvalue distribution. Indeed, even
though long-lived modes (y, < I'g) exist, they are limited
to values larger by several orders of magnitude compared
to the scalar case. The corresponding spectral overlap also
shows a distinct behavior, with g almost independent of the
system size kR [see Fig. 3(a)], yielding a scaling function
B close to zero, albeit slightly negative [see Fig. 3(b)]. This
behavior of the scaling function § might make this vectorial
case very interesting to study fine corrections of the atom-atom
interactions as it seems to be close to the critical regime.

The above discussion is consistent with the conclusions
drawn from the study of eigenvalues in 3D [4,10]. With the aim
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to pin down the essential ingredient of the difference between
the scalar and vectorial model, we artificially introduced or
removed short range terms in the two configurations. More
specifically, we removed the near-field coupling from vectorial
scattering by substituting H»(kr) by Hy(kr) + 4i /7 (kr)?, thus
suppressing the near fields. The corresponding eigenvalue
distribution is shown in Fig. 2(b). Despite the fact that the +-1
sublevels remain coupled, the eigenvalue distribution of the
vectorial case without near-field terms closely resembles that
of the scalar case, even though the smallest values of y,, do not
reach the lowest limits obtained in the scalar case. Conversely,
if we add a near-field term, which we choose as the one present
in vectorial scattering —4i / (kr)?, to the scalar kernel Hy(kr),
the long lived modes of the purely scalar case disappear [see
Fig. 2(c)]. The scaling analysis, as well as a thorough analysis
of the spatial extension of the modes, confirm that Anderson
localization is absent from these altered interactions.

Focusing on lifetimes, the study of the longest of them I'yy,
first reveals that for low densities (p < 0.3), long lifetimes
are caused by the radiation trapping ~1 /bg [14], with by the
cloud optical depth [15] [see Fig. 3(c)]. However, for scalar
light, the appearance of the localized modes for p/k* > 0.3
comes along with lifetimes much larger than those predicted
by radiation trapping, see Fig. 3(c). These lifetimes are not
simply a function of the density p/k? but appear to scale as
N?/3/kR and to decay exponentially fast [see Fig. 3(d)]. This
result is clearly beyond the standard Anderson localization,
where quantities scale as N/R?, or cooperative effects where
it scales as N/R, and calls for new approaches. Finally, while
scalar light with near fields exhibits lifetimes that always decay
as 1/b} [it is almost with the radiation trapping black curve
in Fig. 3(c)], both vectorial light with and without near field
exhibit lifetimes longer than that of radiation trapping: These
come from atom pairs instead of localized modes, as reveals
the analysis of the IPR and of the spatial profiles.

These results suggest that both the presence of near-field
interaction terms [4] and coupling of different sublevels can
break down long lifetimes and localization. We also found that
removing the anisotropy present in vectorial scattering [e=2#
in Eq. (18b)] does not restore localized modes.

Our 2D study, apart from the investigation of subradiance
and localization in lower dimensions, allows for a more
efficient numerical study of the eigenvectors of the dipole-
dipole coupling. One aspect of the eigenvector analysis is
already seen in Fig. 2, where the IPR of the eigenmodes
allows, for instance, a clear identification of atomic pairs
(red circles in Fig. 2 corresponding to an IPR close to 0.5,
indicating atom pairs). In addition, the 2D configuration allows
for an easy systematic study of the shapes of the eigenvectors:
two typical eigenmodes are shown in Fig. 1. The localized
mode is spatially well confined [inset in Fig. 4(a)] and has
a clear exponential shape over several orders of magnitude
[Fig. 4(a)]. Vectorial eigenvectors, on the other hand, are
extended over almost the whole system size [inset in Fig. 4(b)],
with no indication for an exponential decrease [Fig. 4(b)].
This observation is again in line with previous conclusions in
3D [4,10]. The scalar light with near fields and vectorial light
without near fields do not exhibit any exponentially localized
modes, but rather extended modes, as can be observed in Fig. 5.
These scatterings, as well as the vectorial light with near fields,
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FIG. 4. (Color online) Spatial profile of the most subradiant
nonpair mode for (a) scalar light (exponentially localized mode) and
(b) vectorial light (delocalized mode), as a function of the distance
to its center of mass r.,,. The 2D profile is exhibited in the inset.
(c) Inverse lifetime versus localization length of the modes for scalar
light; the localization length & is obtained by exponential fit of the
spatial profile of the mode [(a) for an example], so it is meaningful
only for localized modes, within the dashed-bordered box. More
specifically, the strongly subradiant modes lying outside of the box are
extended, and so are the superradiant (£ typically exceeds the system
size for these, sign of a full delocalization). (d) Localization length
for scalar light as a function of the normalized density, for different
scatterer number. The “theory” line refers to the theoretical prediction
k& = (k?/4p) exp(mk?/8p). (a) and (b) were realized for N = 5000
and /o/k2 =1, s0 kR =~ 40; (c) is for N = 5000 and ,o/k2 =10, so
kR = 12.6, as marked by the dash-dotted line.

may however present features of hybrid states where localized
and extended subradiant features combine [16].

The localized nature of the strongly subradiant modes is
thus confirmed by the analysis of their spatial profile. Further-

(@
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100 20 30

Kr-r | KHr-r |
j cm i cm

n n

FIG. 5. (Color online) Spatial profile of the most subradiant
nonpair mode for (a) scalar light with near fields and (b) vectorial
light without near fields. Simulations realized for an homogeneous
disk cloud of N = 5000 particles with an homogeneous p/k> = 1
density.
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more, as long as the mode does not considerably extend over
the edge of the atomic cloud, its localization length and lifetime
are uncorrelated [uniform filling of the box in Fig. 4(c) with
modes]. There is however a correlation between the position
of the mode (indicated by the color code, where blue points
mark modes at the center of the system) and its localization
length. Some modes even mix to surface (whispering gallery)
modes that have a much larger spatial extend. Yet there is no
correlation between the position of the mode (at the center
or near the edge of the cloud) and its lifetime. The absence
of correlation between the lifetime of the modes and their
localization length calls for a differentiation between spatial
and temporal localization. Although all spatially localized
modes are subradiant, the shortest localization length may
not be associated with the longest lifetimes. This corroborates
studies on photon escape rates that failed to observe the
localization phase transition [7], and is also highlighted by
the fact that spatial localization is affected by boundary effects
while temporal localization, surprisingly, does not seem to
be. Finally, as can be seen in Fig. 4(d), for densities above
0/ k? ~ 0.05 the localization length no longer depends on the
system size, but only on the spatial density. These curves are
notin agreement with the prediction of localization length from
the perturbative approach in the weak disordered regime [17].

We have also verified [see Fig. 3(a)] that the corresponding
spectral overlap g and the scaling function 8 for the altered
interactions are qualitatively similar to the one of the purely
vectorial case, i.e., they deviate only slightly from zero.
Similarly, inspection of the eigenvalues did not reveal any
spatially localized mode. Together with the above results
on lifetimes, this observation suggests that extremely long
lifetimes of modes, well beyond radiation trapping ones,
come along with spatial localization, i.e., subradiance may be
a condition necessary to localization.

IV. CONCLUSIONS

In conclusion, we explored 2D scattering by point scatterers
in a scalar and a vectorial limit. Even though our eigenvalue
analysis is consistent with previous results and interpretations
of localization, our procedure of artificially introducing or
removing near-field terms combined with a spatial analysis
of the eigenfunctions support that very long lifetimes come
along with Anderson localization, but both near-field terms
and the coupling of polarizations may prevent their emergence.
Furthermore, we reported an absence of correlations between
lifetime and localization length of localized modes, pointing
at the difference between spatial and temporal localization. An
important task for the future will be to relate both the 2D and
3D studies to transport properties of electromagnetic waves
and to compute observables that can be tested in experiments.
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